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Abstract. We report on how to tackle the problem of establishing a chiral effective field theory in nuclear
matter with explicit pion fields and in the presence of external sources (Ann. Phys. 297, 27 (2002)).
We have made use of the results of J.A. Oller (Phys. Rev. C 65, 025204 (2002)) where the generating
functional for the in-medium chiral SU(2) × SU(2) Lagrangian has been derived. Within this approach
we develop the so-called standard power counting rules for the calculation of in-medium pion properties
if the residual nucleon energies are of the order of the pion mass. In addition, for the case of vanishing
residual nucleon energies, a modified scheme (non-standard counting) is introduced. For both schemes
the pertinent scales where the chiral expansions have to break down are established as well. We have
performed a systematic analysis of n-point in-medium Green functions up to and including next-to-leading
order when the standard rules apply. These include the in-medium contributions to quark condensates,
pion propagators, pion masses and couplings of the axial-vector, vector and pseudoscalar currents to pions.

PACS. 12.39.Fe Chiral Lagrangians – 11.30.Rd Chiral symmetries – 21.65.+f Nuclear matter

1 Introduction

In this paper we will report about a systematic study of
the properties of pions and external sources in nuclear
matter [1,2]. For typical nuclear densities, the interac-
tions of the constituents of nuclear matter belong to the
low-energy regime of strong interactions, such that one has
to deal with phenomena in the non-perturbative sector of
the underlying theory, QCD. Thus approximations are un-
avoidable. However, they should be controllable as in the
methodology of effective field theories. Consequently, the
aim is to create an in-medium QCD effective field the-
ory that allows to estimate the errors when the pertinent
perturbative expansion is truncated at some order.

The low-energy effective field theory of QCD in the
vacuum is chiral perturbation theory (ChPT) [3,4]. It
is believed that the approximate SU(2)L × SU(2)R chi-
ral symmetry of QCD is spontaneously broken down to
its vectorial subgroup, SU(2)L+R, with the appearance
of three (Pseudo-)Goldstone bosons which can be identi-
fied with the three pion states, π±, π0. The unique order
parameter signaling this symmetry violation is the finite-
ness of the square of the weak pion decay constant in the
chiral limit, f2 �= 0; in fact, f � fπ = 92.4MeV. In ad-
dition, the chiral symmetry is also explicitly broken be-
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cause the current up and down quarks have a small mass
(small compared to a typical hadronic scale of 1 GeV).
Due to Goldstone’s theorem, the interactions of the pi-
ons with themselves or matter fields must vanish as the
three-momentum and energy go to zero in the chiral limit.
This in turn allows for a systematic treatment of such pro-
cesses in the framework of an effective field theory, namely
ChPT [3,4], in terms of a simultaneous expansion in ex-
ternal momenta and mass terms.

ChPT allows not only to tackle processes involving
pions, but as well to consider nucleons (baryons). These
massive states are included as matter fields chirally cou-
pled to pions and external sources.

There are many articles [5–8] in the literature where
ChPT Lagrangians, at most bilinear in the nucleon fields,
are applied to the nuclear matter case in the mean-field
approach, i.e. where the information contained in the vac-
uum ChPT Lagrangians is kept, but the baryon propaga-
tors in the medium are replaced by local densities in the
mean-field approach. Proceeding in this way one looses
the chiral counting in the medium, since the non-local nu-
cleon correlations, due to the baryon propagators, are not
considered. In fact, such contributions can be of the same
or even of lower chiral order as those terms kept in the
mean-field approach. Especially, they are the dominant
contributions when the energy flowing through the baryon
propagator is of the order of a nucleonic kinetic energy [1].
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2 In-medium generating functional

Our starting point is the ChPT Lagrangian supplemented
by external fields [4]. As in the mean-field approaches,
multi-nucleon interactions will be left out here. Thus only
the perturbative expansion of the chiral lagrangians Lππ

and Lψψ (the latter is bilinear in the nucleon field) in pow-
ers of the external four-momenta of the pions, the external
three-momenta of the nucleons and the quark masses will
be taken into account. We apply the generating functional
techniques of ref. [2]; i.e. the in-medium SU(2) × SU(2)
generating functional is written as a path integral over the
chiral field U ≡ uu ≡ exp[iφ/f ], where the ground states
at asymptotic times have been replaced by the Fermi sea
states of protons and neutrons and where secondly the
nucleon fields have been integrated out:

eiZ[v,a,s,p] =
∫
[dU ]

× exp

{
i

∫
dxLππ+

∫
dp

2E(p)(2π)3

∫
dxdy

× eip(x−y)Tr
[
−iA(

I4−D−1
0 A

)−1|(x,y)(p/+mN )n(p)
]

−1
2

∫
dp

2E(p)(2π)3

∫
dq

2E(q)(2π)3

∫
dxdx′dydy′ eip(x−y)

× e−iq(x′−y′)Tr
[
−iA (

I4−D−1
0 A

)−1|(x,x′)(q/+mN )n(q)

× (−iA) (
I4−D−1

0 A
)−1 |(y′,y)(p/+mN )n(p)

]
+ · · ·

}

≡
∫
[dU ] exp

{
i

∫
dxL̃ππ[U ; v, a, s, p]

}
. (1)

Here A = D0(x)−D(x) is the difference between the free
Dirac operator D0 = iγµ∂µ−mN and the Dirac operator
D(x) of Lψψ ≡ ψ(x)D(x)ψ(x), while I4 is the unit oper-
ator in 4 dimensions. Thus A(x) is a vertex operator in
terms of pion legs and external (vector v, axial-vector a,
scalar s, and pseudoscalar p) sources. The diagonal flavor
matrix n(p) = diag[θ(k(p)

F −|p |), θ(k(n)
F −|p |)] parametrizes

the upper cutoff for the three-momentum integrations,
where k(p)

F and k(n)
F are the proton and neutron Fermi

momenta, respectively. Finally, E(p) = (p 2 +m2
N )1/2 is

the on-shell energy of the nucleon of mass mN .

In this way the in-medium ChPT Lagrangian L̃ππ,
is derived. The structure is the same as for vacuum
ChPT, except for the important difference that the re-
sulting Lagrangian is non-covariant as well as non-local.
Especially, there appears now a non-local vacuum vertex
Γ ≡ −iA(I4 −D−1

0 A)
−1 that generates a geometric series

in terms of the local interaction operator A and the free
Dirac propagator D−1

0 . The vertex-operator A in turn is
subject to a chiral power expansion. The pertinent inter-

action operators of first and second order read

A(1) = −iγµΓµ − ig0Aγµγ5∆µ ,

A(2) = −c1〈χ+ 〉 − 2c2〈∆µ∆ν〉D
µ

mN

Dν

mN

+ 2c3〈∆µ∆
µ〉 − c5

(
χ+− 1

2 〈χ+〉
)
+ · · · ,

with χ+ ≡ u†χu† + uχ†u , χ ≡ −2
〈q̄q〉
f2

(s+ ip) ,

2
{
Γµ

∆µ

}
≡ [
u†, ∂µu

]
∓− iu†(vµ+aµ)u± iu(vµ−aµ)u†.

Here Dµ ≡ ∂µ +Γµ and 〈· · · 〉 is defined as the trace in the
flavor space. The ci’s are low-energy constants of O (

p2
)

terms and therefore finite, see ref. [9,10] for more details.
A(1) includes the S-wave Weinberg-Tomozawa term and
the derivative P -wave pion-nucleon coupling, while the
sigma-term (proportional to c1) and the so-called range
terms (proportional to c2 and c3) appear in A(2). The
generalized in-medium vertices consist of non-local vac-
uum vertices Γ connected through the exchange of on-shell
Fermi-sea states with pertinent three-momenta smaller
than k(p)

F (k(n)
F ). These generalized vertices may still be

linked to each other by pion legs from the local Lagrangian
Lππ. The lowest order in-medium vertices contain only
A(1) operators; the next-to-leading order is obtained when
one A(2) operator is involved. We refer to ref. [1] for the
pertinent Feynman rules for the computation of connected
in-medium graphs in momentum space.

3 Results

The novel results that we have obtained in ref. [1] can be
summarized as follows:

i) In contrast to most previous works, which adopt
the mean-field approach or many-body calculations, the
in-medium chiral counting has been established includ-
ing contributions from baryon propagators. The counting
scheme depends on the energy flowing into the nucleon
lines. This leads to a separate treatment of the standard
and the non-standard case (i.e., vanishing energy flow),
respectively. In the standard case, the chiral expansion of
pion properties in the medium starts with terms at O(p4),
and the next-to-leading order corrections appear at O(p5),
in the non-standard case (e.g., in the in-medium ππ scat-
tering) these orders are O(p3) and O(p4), respectively,
whereas the in-vacuum power counting starts at O(p2)
with next-to-leading corrections of O(p4).

ii) In the vacuum, the scale at which the chiral ex-
pansion is bound to break down is approximately Λχ �
1GeV∼ 4πfπ. In the medium, there appear two further
scales. These are

√
6πfπ � 0.7 GeV and 6π2f2

π/2mN �
0.27 GeV for the standard or the non-standard counting
rules, respectively. If there are P -wave interactions, the
two in-medium scales have to be reduced by a factor of
1/gA or 1/g2A, respectively.

iii) We have re-derived, from the effective field the-
ory point of view, the in-medium quark condensates in
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symmetric nuclear matter [12,13] and have further ex-
tended them to the non-symmetric case:

〈Ω|q̄q|Ω〉 = 〈q̄q〉vac
[
1− 2σ

f2M2
π

ρ̂± 4c5
f2
ρ

]
.

Here the ± sign applies for the 〈ūu〉 and 〈d̄d〉 condensate,
respectively. |Ω〉 is the nuclear matter background, while
ρ̂ ≡ 1

2 (ρp + ρn) and ρ ≡ 1
2 (ρp − ρn) are defined as the

isospin symmetric and asymmetric combinations of the
proton and neutron density, ρp and ρn respectively. The
quantity σ = −4c1M2

π ≈ 44 ± 8 ± 7MeV is pion-nucleon
sigma term [11,14] and Mπ is the vacuum pion mass.
The low-energy constant c5 = −(0.09 ± 0.01)GeV−1

parametrizes the strong isospin breaking [14]. It is
very suppressed as compared to 2c1 = 2(−0.81 ± 0.12)
GeV−1 [15]. Hence the presence of a c5 term does not
induce a sizable change of the quark condensates at finite
density, as studied in refs. [7,12,13] for the symmetric
nuclear matter case. At normal nuclear matter density
ρ = ρ0, there is a 35% reduction of the condensates. This is
compatible with a partial restoration of chiral symmetry.

iv) We have obtained the inverse pion propagator up
to O(p5). The corresponding dispersion relation between
the energy ω and the three-momentum q of an in-medium
pion πa (a = +,−, 0) is given by

ω2 −M2
πa

(
1+c1

8ρ̂
f2

)
+

4ρ̂
f2
ω2

(
c2+c3− g2A

8mN

)
− q 2

(
1+

4ρ̂
f2
c3− g2Aρ̂

mNf2

)
− g2Aρ̂

2f2mN

(
q 2

)2

ω2

− δa0
4M2

πaρ

f2

mu−md

mu+md
c5 ± δa±

(
g2Aq 2

f2ω
− ω
f2

)
ρ = 0. (2)

Here Mπa is the vacuum mass of pion πa at O(p4). For
symmetric matter (ρ = 0) and in the chiral limit (mq = 0)
the dispersion law simplifies to ω2 = q 2

(
1− 4ρ̂c2/f2

)
.

Thus the in-medium pion velocity ṽ = dω/d|q | = 1 −
2ρ̂c2/f2 is less than the vacuum speed of light (c = 1)
for the empirical value of the low-energy constant c2 =
(3.2±0.25)GeV−1 of ref. [9,10]. Inserting furthermore the
value c3 = (−4.70 ± 1.16)GeV−1 from ref. [15], we have
established from eq. (2) that chiral symmetry can account
for the observed shift of the mass of the negative pion in
deeply bound pionic states in 207Pb [16,17], see also [18].

v) The wave function renormalizations of the in-me-
dium pion fields, 〈Ω|πα(x)|πβ(p)〉 ≡ Zα(q 2)−1/2δα βe

−ipx,
have been established from general principles via the
equal-time commutation relations.

vi) With the help of the generating-functional formal-
ism we can also study the coupling of pions with axial-
vector and pseudoscalar sources [1]. In particular, we have
shown that there is a splitting of the temporal and space-
like component of the in-medium pion decays constants ft
and fs, respectively [19,7,8]), which we have determined
in the isospin-limit (ρ = mu−md = 0) and at threshold as

ft/s = fπ

{
1± 2ρ̂

f2

(
c2 ± c3 ∓ g2A

8mN

)}
. (3)

Moreover, we have confirmed that in-medium corrections
up to O(p5) do not spoil the validity of the Gell-Mann-
Oakes-Renner relation, see ref. [7]. The decrease with in-
creasing density for both, the quark condensates and the
temporal component of the pion decay constant ft seem
to indicate a partial chiral symmetry restoration with in-
creasing density. In addition, we have checked that the
QCD Ward identities between the axial-vector currents
and pseudoscalar (isovector and isoscalar) currents hold
to O(p5).

vii) Finally, the in-medium ππ scattering has been
studied up to O(p3) since in this case the non-standard
counting occurs. Note that not only the in-medium cor-
rections start at a lower order than in the standard case,
namely already at O(p3), but also the scale, below which
the perturbative expansion is applicable, decreases. This
leads to a rapid increase of the in-medium corrections with
density. In fact, already at kF � 200 MeV, or at a density
of just ∼ 0.4ρ0, they are of the same size as the lowest
order ChPT results.

4 Outlook

There are still open problems, e.g. the inclusion of multi-
nucleon contact interactions remains a challenge, espe-
cially since the S-wave nucleon-nucleon interactions are
enhanced because of the largeness of the S-wave scatter-
ing lengths related to the presence of shallow NN bound
states. Moreover, this task has to be combined with simul-
taneous pion-loop calculation in order to guarantee that
all in-medium O(p6) contributions are taken into account.
Finally, a search for a non-perturbative scheme that would
allow to recover the scale

√
6πfπ, even in the case of the

non-standard counting or even in the presence of multi-
nucleon contact interactions, should be high on the list of
future investigations in this field.
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